Introduction of OXA-48-producing Enterobacteriaceae to Israeli hospitals by medical tourism

Amos Adler1*, Maya Shklyar1, Mitchell J. Schwaber1, Shiri Novon-Venezia1, Yacoub Dhaher2, Rotem Edgar1, Ester Solter1, Shmuel Benenson3, Samira Masarwa1 and Yehuda Carmeli1

1National Center for Infection Control, Israel Ministry of Health, 6 Weizman St., Tel-Aviv, 64239, Israel; 2Augusta-Victoria Hospital, POB 19178, Jerusalem, 91191, Israel; 3Department of Clinical Microbiology and Infectious Disease, Hadassah Medical Center, Hebrew University-Hadassah School of Medicine, POB 12000, Jerusalem, 91120, Israel

*Corresponding author. Tel: +972-3-6925644; Fax: +972-3-6974332; E-mail: amosa@tasmc.health.gov.il

Received 7 June 2011; returned 8 July 2011; revised 18 August 2011; accepted 19 August 2011

Objectives: The carbapenemase OXA-48 has been reported from different Mediterranean countries. It is mostly encoded on a single plasmid in various Enterobacteriaceae species. We characterized the epidemiological and molecular features of OXA-48-producing Enterobacteriaceae (OPE) in Israel.

Methods: Epidemiological investigation was conducted by the National Center for Infection Control. Genotyping was performed using multilocus sequence typing. The blaOXA-48-carrying plasmids were investigated using S1 endonuclease and restriction fragment length polymorphism (RFLP). Conjugation efficiency of the blaOXA-48-carrying plasmids was studied in a filter mating experiment.

Results: Since 2007, four OPE-infected patients were identified, all non-Israeli (two Palestinian, one Jordanian and one Georgian). Three had prior hospitalization; two in Jordan and one in Georgia. The blaOXA-48 gene was detected in three *Escherichia coli* strains belonging to different clonal complexes, one *Klebsiella oxytoca* and one *Klebsiella pneumoniae* sequence type 101, as previously reported from Tunisia and Spain. In all isolates, the blaOXA-48 gene was located inside Tn1999.2 and was carried on a 60 kb plasmid with an identical RFLP pattern. The plasmid was able to conjugate from *Klebsiella* spp. to *E. coli*, and had a conjugation efficiency up to \(\approx 10000 \) times higher than that of pKpQIL.

Conclusions: OPE, introduced mainly by medical tourism, are an emerging threat to patients from affected Mediterranean countries. The blaOXA-48-carrying plasmid demonstrated remarkable conjugation efficiency, which is probably important in the success of its dissemination.

Keywords: conjugation, plasmids, carbapenemases

Introduction

OXA-48 is one of the few Ambler class D, carbapenem-hydrolysing \(\beta \)-lactamases that have been identified in Enterobacteriaceae and is the most commonly reported. First identified in Turkey in 2001, OXA-48-producing Enterobacteriaceae (OPE) have since been reported from several countries in the Middle East, North Africa and Europe. The blaOXA-48 gene has been detected in a variety of Enterobacteriaceae species and clones, but a common feature in almost all isolates is the location of the gene inside the Tn1999 transposon within a 70 kb plasmid.

Since 2006, resistance to carbapenems in Enterobacteriaceae in Israel has been caused mainly by a single clone of KPC-producing *Klebsiella pneumoniae*, believed to have been imported from the USA in late 2005. Here we describe the epidemiology and molecular characteristics of OPE infection identified in Israel since 2007.
He was diagnosed with cholangiocarcinoma and underwent fully treated with ceftazidime and colistin. The second patient, a woman referred to our hospital for oncological care, was diagnosed with OPE infections.

Plasmid analysis

Plasmid DNA purified from the five isolates was transformed into *E. coli* DH10B. Transformants were selected on LB agar supplemented with 100 mg/L ampicillin and confirmed by bla*OXA*-48 PCR. Determination of plasmid size and restriction fragment length polymorphism (RFLP) were done as previously described. The plasmid incompatibility group (Inc) was determined using a PCR-based replicon typing method and repP PCR. The genetic environment of the *bla*OXA-48 gene was studied by PCR and sequencing as previously described.

Conjugation experiments

Conjugation was tested using a filter mating experiment. We used 100 mg/L ampicillin and confirmed by *bla*OXA-48 PCR. Determination of plasmid size and restriction fragment length polymorphism (RFLP) were done as previously described. The plasmid incompatibility group (Inc) was determined using a PCR-based replicon typing method and repP PCR. The genetic environment of the *bla*OXA-48 gene was studied by PCR and sequencing as previously described.

Results

Clinical and demographic features of OPE-infected patients

Clinical and demographic features of the four OPE-infected patients are summarized in Table 1. The first patient, a Jordanian woman referred to our hospital for oncological care, was diagnosed with OPE infections.

Microbiological and molecular characteristics of OPE strains and *bla*OXA-48-carrying plasmids

All isolates yielded a positive MHT and a negative ESBL double-disc test (except 6537) and negative boronic acid, EDTA and dipicolinic acid assays. PCR was positive for the *bla*OXA-48 gene in all isolates. All isolates and their respective transformants (T), except *E. coli* 6537, were susceptible to ceftriaxone and ceftazidime but had elevated MICs of ertapenem and imipenem (Table 2). Isolate *E. coli* 6537, but not 6537T, tested positive for the *bla*OXA-48-harbouring plasmid. This plasmid was shown to be the main *bla*OXA-48-carrying plasmid found in the epidemic *K. pneumoniae* clone in Israel, sequence type (ST) 258. It was also identified in isolate 2112, a clinical *E. coli* strain that was used as a donor in our experiment. Conjugation efficiency was calculated as the number of transconjugants per recipient cell.

Conjugation studies

*bla*OXA-48-carrying plasmids from all isolates were able to undergo both intra- and inter-species self-conjugation. Intra-
species conjugation of the \(\text{bla}_{\text{OXA-48}} \)-carrying plasmid (isolates 6537 and 4360A) was highly efficient, with a conjugation frequency of \(5.5 \times 10^{-1} \) and \(8.4 \times 10^{-2} \), respectively, compared with only \(1 \times 10^{-5} \) for the pKpQIL plasmid (isolate 2112).

Discussion

This report highlights the role of medical tourism as a main route for the introduction of OPE to Israel; three of the four patients (Patients 1–3) were hospitalized outside of Israel (two in Jordan and one in Georgia) prior to the detection of an OPE infection. In the fourth patient, the acquisition could not be traced to healthcare exposure, raising the possibility of community acquisition, possibly during one of her frequent trips to Jordan. Interestingly, she was a carrier of OXA-48-producing K. pneumoniae ST101, as previously reported from Tunisia\(^4\) and Spain.\(^18\)

Our study demonstrates the presence of the \(\text{bla}_{\text{OXA-48}} \) gene inside Tn1999.2, in an identical 60 kb plasmid in various \(E. \) coli and Klebsiella spp. isolates. The \(\text{repP} \) gene, detected in the previously described 70 kb plasmid,\(^1\) was not detected in our plasmid. A recent report from Tunisia identified two types of 70 kb, \(\text{bla}_{\text{OXA-48}} \)-carrying plasmids, one presenting the IncA/C group and the other undetermined.\(^1^9\) Hence, it appears that \(\text{bla}_{\text{OXA-48}} \)-carrying plasmids are not identical, and may vary in their Inc group.

Unlike \(\text{bla}_{\text{KPC-3}} \), which has spread mainly in a single epidemic \(K. \) pneumoniae clone (ST258),\(^5\) the spread of the \(\text{bla}_{\text{OXA-48}} \) gene is likely to be facilitated by the transfer of plasmids.\(^3\) The conjugation experiments performed have demonstrated that (i) the \(\text{bla}_{\text{OXA-48}} \)-carrying plasmid identified here is capable of interspecies conjugation, as previously described,\(^1\) and (ii) its conjugation efficiency is \(~10000\) times higher than that of pKpQIL, the \(\text{bla}_{\text{KPC-3}} \)-carrying plasmid. These differences in conjugation frequencies may help to improve our understanding of the different ways in which different carbapenemases spread. As knowledge regarding the prevalence of resistant organisms in certain countries may be lacking, admission screening for resistant organisms of all patients who have received medical care in foreign countries may be prudent.

Funding

This work was supported in part by European Commission FP7: SATURN—Impact of Specific Antibiotic Therapies on the Prevalence of Human Host Resistant Bacteria research grant 241796.

Transparency declarations

None to declare.

Supplementary data

Figure S1 is available as Supplementary data at JAC Online (http://jac.oxfordjournals.org/).

References

